

A Study on Investor Awareness and Adoption Patterns of Systematic Withdrawal Plans (SWP) in Mutual Fund Investments

Keval Amlani^{1*}, Rutvi Raval², Dr. Jignesh Vidani³ Institute of Management Studies L J

Corresponding Author: Keval Amlani: Shivamamlani28@gmail.com

ARTICLEINFO

Keywords: Mutual Fund, Investment, Awareness, Systematic Withdrawal Plan

Received: 20, July Revised: 22, June Accepted: 25, August

©2024 Amlani, 4.0 Internasional. (a) (i)

ABSTRACT

Section A of the questionnaire focuses on demographic information, covering age, gender, educational qualification, occupation, and annual income to understand the respondent profiles. This information provides context regarding how demographic factors might influence awareness and adoption patterns of SWP. Section B delves into investment behavior using a 5-point Likert Raval, scale, exploring aspects such as investment Vidani: This is an open-experience, review frequency of mutual fund article distributed investments, understanding of different mutual under the terms of the fund types, reliance on financial advisors, and Creative Commons Atribusi preference for long-term investments. Section C assesses awareness of SWP among respondents, evaluating their knowledge about its benefits, the process of setting up SWP, its utility in managing regular cash flows, and its comparative advantages over traditional withdrawal methods. Section D focuses on the adoption of SWP, investigating whether respondents have implemented SWP for their mutual fund investments, their perceptions its convenience for financial planning, of recommending likelihood it to others, satisfaction with its withdrawal frequency flexibility, and consideration of tax implications in their decision-making

ISSN-E: 3025-7131 https://journal.multitechpublisher.com/index.php/IJETR

INTRODUCTION

A Filling *Machine* is a machine used to fill liquid products into packaging. This machine can be used in petrifying, packaging and filling various types of products. Products can be in the form of liquids, which are put into different types of packaging. Such as bottles, pouches, or cans. Based on observations in the field, entrepreneurs in the field of packaging and filling liquid products are still carried out conventionally with human labor in the filling process, such as opening/closing valves.

In addition, with the help of media such as funnels as a pouring medium. Thus, often the manual filling of soy sauce products can cause uncertainty in filling volume, consistency, speed and cleanliness which can affect the quality of the final product. One of them is to achieve this goal by implementing an automatic control system based on PLC and HMI. The engine system used in the filling process of this liquid product uses a piston pump system controlled by pneumatics. This is because the liquid used is soy sauce liquid or has a high density with a very thick liquid condition.

In line with that, the design of this tool aims to overcome these problems with "Design of Control System for Automatic Filling Machines for Soy Sauce Products Based on Mitsubishi PLC and HMI. Because of the reliability and technology of this PLC is able to control industrial processes, while HMI will provide interfaces and monitoring.

Problem Formulation

Based on the background that has been explained above, the questions that become the formulation of the problem arise. Which is formulated as follows:

- 1. How to design *the Wiring Diagram* and implement the installation system on the control panel *of the Filling Machine?*
- 2. How to design the control system on the *Soy Sauce Liquid Product Filling* Machine?
- 3. How to design the control and *monitoring* design on the HMI *filling machine*?
- 4. How to do the working test *of the Filling machine* for filling soy sauce liquid products?

Purpose

Based on the limitations of the problem, it can be explained that the objectives of the research/design of the final project are as follows:

- 1. Able to design *Wiring Diagrams* using *Q-Electro Software* and perform electrical system assembly on the engine control panel.
- 2. Able to design the control system of the *Filling* Machine using Mitsubishi PLC through *GX Works* 2 software.
- 3. Can design control and *monitoring* systems using HMI "Weintex" through *Easy Builder Pro* software.

Able to test the work of *the Filling* Machine filling soy sauce liquid products through the test form.

METHODOLOGY

A. Component Planning

To make it easier to design a tool and so that the tool can run well, it is necessary to determine the specifications of the tool and the material, including the following:

- 1. PLC Mitsubishi
- 2. HMI Weintex
- 3. Power Supply 24VDC
- 4. Relay
- 5. Solenoid Pneumatic
- 6. Valve
- 7. Pneumatic
- 8. Sensor Proximity dan Sensor CS1-U
- 9. Kabel NYAF merah dan hitam 0.75 mm

B. System Schematics

The schema is made to make it easier to understand the working system of the tool to be created. Here is the working system of the tool to be created

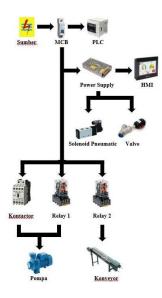


Figure 1. Tool-Wide System Schematic

C. System Flowchart

A flowchart is a workflow diagram of a tool or system that functions to facilitate a brief explanation of how a tool is created or used.

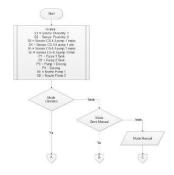
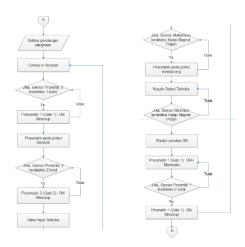



Figure 2. Flowchart System Working Mode Tool

Figure 3. Otomatic Workflow System Flowchart

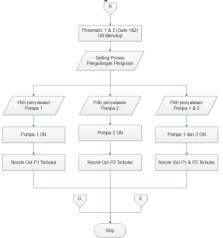


Figure 4. Semi-Manual Workflow System Flowchart

D. Hardware Planning

> Tool Planning

In this section, planning will be discussed on the tools used for the implementation of the program.

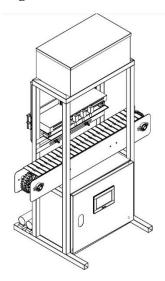


Figure 5. Tool Design

Wiring Design for Mechanical Electrical Installation

In the planning of the electrical installation, the engine

In the planning of the electrical installation, the engine control panel will be made in the Q-Electro Tech software, as follows:

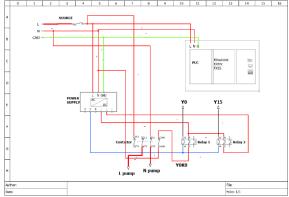


Figure 6. Power Wiring

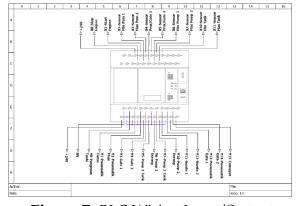
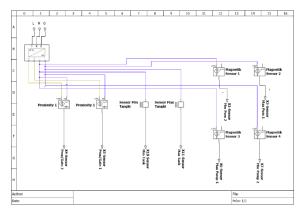
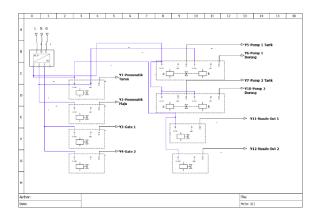




Figure 7. PLC Wiring Input/Output

Figure 8. Wiring Sensor

Gambar 9. Wiring Solenoid/Pneumatic

➤ Assembly of Filling Machine Control Panel

The control panel of this machine has stainless stell material, which has dimensions of 60 cm in length, 35 cm in width and 50 cm in height,

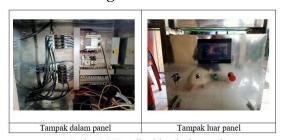


Figure 10. Control Panel Display

E. Software Design

Program PLC Mitsubishi FX3U

This PLC program is made with the GX Works 2 application with LD (*Ladder Daiagram*) type. Below are parts of the Automatic work system program.



Figure 11. Automatic Selector

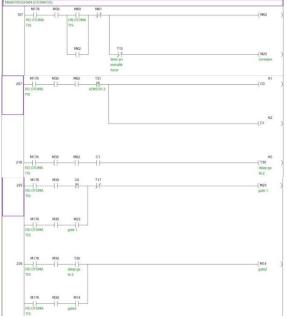


Figure 12. Counter sensor and Gate movement

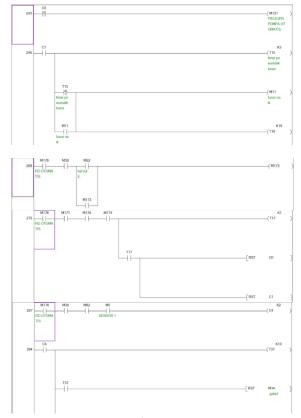


Figure 13. Charging Process

HMI Design

This HMI is used to display and monitor the system. Design HMIs using the Easy Builder Pro app.

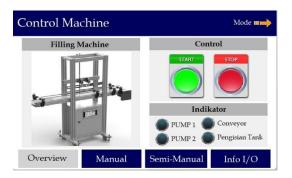


Figure 14. Design Overview/Main control HMI

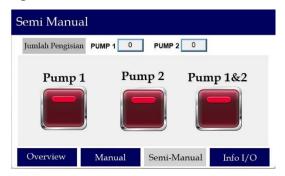


Figure 15. Semi-Manual Design HMI

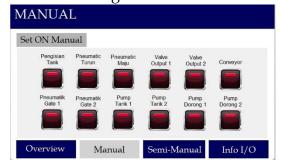
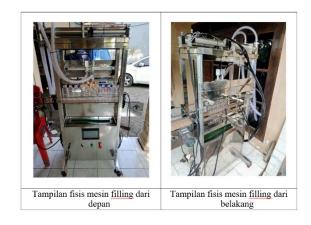


Figure 16. HMI Manual Set On Design

Figure 17. HMI Input/Output Monitoring Design


RESULTS AND DISCUSSION

At this stage of results and discussion, tests will be carried out on the tools that have been planned and made in advance to obtain data that will be discussed against the tests so that conclusions can be obtained so that this tool can be known in accordance with what was previously planned.

> RESULT

A. Tool Manufacturing

This part is the result of the design or physical shape of the *filling machine* that has been made.

Figure 18. Physical Display of Filling Machine **HMI Function**

The following is an explanation of each function of the button in the HMI.

Table 1. Button Function and HMI Indicator

No	Gambar	Keterangan
1	START	Tombol start/Stop system untuk mengaktifkan mode kerja secaraotomatis mesin filling.
2	Indikator PEMP 1 Conveyor PEMP 2 Penglolan Tank	Indikator sistem kerja otomatis, apabila dalam proses penarikan/ memompa cairan atau konveyor bekerja maka indikator akan menyala
3	Otomatis Semi-Manual	Tombol <u>setting/selector</u> untuk memilih <u>system</u> kerja secara otomatisatau sistem kerja secara semi-manual
4	PUMP 1 0 PUMP 2 0	Tombol untuk mengatur perulangan proses pompa/tarikan piston beberapa kali menyesuaikan dengan kebutuhan
5	Pump 1 Pump 2 Pump 1&2	Tombol ON/OFF untuk <u>penyalaan</u> system kerja secara semi-manual (kerja pump 1 saja/ kerja pump 2 saja/pump 1 dan pump 2 secara bersamaan)
6	Penginan Prestrate: Prestrate Test Street Season Freshilds Penginah Cale 1 Cate 2 Test 1	Tombol ON/OFF sistem kerja manual dengan menombol tiap actuator untuk melakukan kerja tiap actuator
7	30 - Stop Enginee 31 - Stort Enginee 32 - Messimum Pump 2 33 - Messimum Pump 1 34 - Sensor Gato 2	Indikator pada <u>input</u> mesin <i>filling</i> , apabila suatu <u>inputan</u> mesin <i>filling</i> bekerja maka indikator akan menyala.

B. Hardware, Program and HMI Synchronization

In testing this manual work mode, it is carried out by combining each actuator that functions to ensure that each *actuator* can work according to its own function and the program can work properly.

1. Output Nozzle Testing 1 & 2

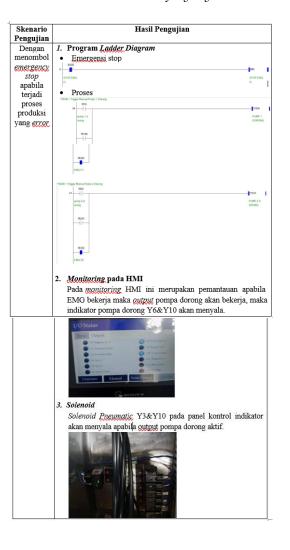
Table 2. Program Synchronization, HMI on Nozzle

2. Proximity Sensor Testing

This test is carried out by testing the proximity sensor distance. The photoelectric *seambor* is used as an automatic switch that works with *a variable* output to determine the distance converted into electricity.

Table 3. Tensile Test Measurements

No.	Jarak Pembacaan Sensor	Indikator LED	V output
1.	5 cm	On	24,10 VDC
2	5cm	Qff	0,624 VDC
3	10 cm	On	24,10 VDC
4	10 cm	Qff	0,624 VDC
5	20 cm	On	24,10 VDC
6	20 cm	Qff	0,624 VDC
7	30 cm	On	24,10 VDC
8	30 cm	Qff	0,624 VDC
	1. 2 3 4 5 6 7	1. 5 cm 2 5 cm 3 10 cm 4 10 cm 5 20 cm 6 20 cm 7 30 cm	1. 5 cm On 2 5 cm Off 3 10 cm On 4 10 cm Off 5 20 cm On 6 20 cm Off 7 30 cm On



Picture 19. Tension Test Results with Avometer

3. Testing Error Machine & Safety System

This test is carried out when the condition of the machine is in *an error* condition in the production process or this system is used if the machine is in *an emergency condition*, this is used as a *safety system*.

Table 4. Program Synchronization and HMI Safety System

C. Testing/Production

This process is a production test on *the filling* machine to find out the performance of the *filling* machine based on various parameters and operating systems. Here are the many variations and *setting* on bottle filling.

1. Liquid Water

In the picture below is the result of the automatic water filling process into the bottle. Here are the results of automatic production.

Produksi
Re-1

Produksi
Re-1

Produksi
Re-2

Produksi
Re-2

Produksi
Re-2

Produksi
Re-3

Produksi
Re-3

Produksi
Re-4

Produksi
Re-6

Table 5. Results of Measuring Production on Water

Table 6. Analysis of production measurements on water

Produksi	Hasil Ukur	Hasil Ukur	Time (s)	Ukuran
	Pompa 1	Pompa 2		Sensor
	(ml)	(ml)		(cm)
Produksi	285 ml	280 ml	9,86 s	8 cm
Ke-1				
Produksi	280 ml	280 ml	9,72 s	8 cm
Ke-2				
Produksi	285 ml	280 ml	9,53 s	8 cm
Ke-3				
Produksi	285 ml	285 ml	4,91 s	8 cm
Ke-4				
Produksi	285 ml	280 ml	4,80 s	8 cm
Ke-5				
Produksi	280 ml	285 ml	4,86 s	8 cm
Ke-6				

2. Soy Sauce Liquid

In the picture below is the result of the automatic water filling process into the bottle. Here are the results of automatic production:

Tabel 7. Production results in soy sauce liquid

 $\begin{tabular}{ll} \textbf{Table 8} & . & Analysis of production measurement results in soy sauce \\ liquid \\ \end{tabular}$

Produksi	Hasil Ukur	Hasil Ukur	Time (s)	Ukuran
	Pompa 1	Pompa 2		Sensor
	(ml)	(ml)		(cm)
Produksi	145 ml	145 ml	6,11 s	4 cm
Ke-1				
Produksi	148 ml	148 ml	6,06 s	4 cm
Ke-2				
Produksi	145 ml	145 ml	6,06 s	4 cm
Ke-3				
Produksi	140 ml	140 ml	5,31 s	4 cm
Ke-4				
Produksi	140 ml	140 ml	5,41 s	4 cm
Ke-5				
Produksi	175 ml	145 ml	5,55 s	4 cm
Ke-6				

CONCLUSION

Based on the design and testing of the tool, the following conclusions can be drawn:

- 1. Wiring *diagram* design can be used by designing/conceptualizing using *Q-Electro software* and in the manufacture of the filling machine can be arranged or assembled the control components in the panel according to the specifications that have been determined and perform functional tests on all components to ensure that all components can operate correctly.
- 2. In designing the control system on the *filling machine*, it is made with three working modes, namely Manual Mode, Semi-Manual Mode and Automatic Mode. Manual and semi-manual working modes, the function is used if the automatic working system has *an error* or system damage, then the manual and semi-manual working mode functions will be functioned by regulating the filling on the pump (simultaneous pump work or pump 1 only/pump 2 only). In addition, in the filling process, this machine is also equipped with a *looping* systemfilling, which is where in the filling process we can adjust several filling processes according to the capacity or needs of the packaging bottle and also have a *safety machine* system that is used if the machine is *in an error* condition.
- 3. This filling *machine* is controlled with an interface through HMI (*Human Machine Interface*) *technology*, where in this HMI it is also used as a system control on each machine working mode, and also as *monitoring*. *Monitoring* through HMI can be seen on the indicators of each component, so that it can be easier to identify damage or errors in each component.

In testing this *filling machine*, it is carried out by comparing the liquid to be dispensed, namely by using water and soy sauce in a bottle, because there is a difference in the vicosity of the viscosity of the liquid. This can make it easier for researchers to make observations or improvements to the machine. For example, in the initial test there was a difference in filling time with the result of soy sauce liquid faster than soy sauce so that the researcher made a discussion, namely by changing several components such as the size of the valve diameter

From 2.5 cm to 5 cm due to the inhibition of liquid flow, the size of the piston pump will affect the contents of the size produced in one withdrawal or one pump, namely using the latest size with a width of 13 cm and a length of 23.5 cm

REFERENCES

Ajudiya, M., Patel, M., & Vidani, J. (2023). Beyond fashion: Unveiling the tapestry of consumer satisfaction with Pantaloon's female apparel in Ahmedabad. Journal of Advanced Research in Public Policy and Administration, 5(2). https://adrjournalshouse.com/index.php/Journal-PublicPolicy-Administrat/article/view/1787

Alkhizar, M., & Vidani, J. (2024). Exploring the factors influencing consumer buying behavior of LG products: A comprehensive study. Journal of Advanced Research in Economics and Business Management, 6(2). https://adrjournalshouse.com/index.php/Journal-Economics-BusinessMgt/article/view/1825

Bansal, A., Pophalkar, S., & Vidani, C. (2023). A Review of Ed-Tech Sector in India. International Journal of Management Analytics (IJMA), 1(1), 63-84.

Bariya, M., Vidani, J. (2023). Analyzing Market Share: A Comparative Study of LG and Samsung Electronics in Ahmedabad. International Journal of Management and Commerce Innovations. Retrieved from https://ijmci.in/index.php/ijci/article/view/146

Bhatt, T., Vadher, P., & Vidani, J. (2023). A Study On Usage Of Variyas Online Payment Apps By The People Living In Ahmedabad City. International Journal of Business and Management Practices (IJBMP), 1(1), Article 39. https://doi.org/10.59890/ijbmp.v1i1.1314

Bhatt, V., Patel, S., & Vidani, J. (2017, February). START-UP INDIA: A ROUGH DIAMOND TO BE POLISHED. National Conference on Startup India: Boosting Entrepreneurship (pp. 61-67). Pune: D.Y. Patil University Press.

Biharani, S., & Vidani, J. N. (2018). ENTREPRENEURSHIP: CAREER OPPORTUNITY HAS NO GENDER DISCRIMINATION. Compendium of Research Papers of National Conference 2018 on Leadership, Governance and Strategic Management: Key to Success (pp. 101-104). Pune: D. Y Patil University Press.

Chalplot, D., Jagetiya, S., Vidani, J. (April 2024). Golden Arches of Success: Enhancing Customer Relationship Management at McDonald's, Wide Angle, Ahmedabad. International Journal of Educational and Life Sciences, 2(4). Retrieved from https://journal.multitechpublisher.com/index.php/ijels/article/view/1731

Chaudhary, N., Patel, V., & Vidani, C. J. (2023). A Review of Non-Technical Training Programmes Conducted by Corporate Trainers for IT Companies. International Journal of Management Analytics (IJMA), 1(1), 85-110.

Chourasiya, A., Zala, K., & Vidani, J. (2023). Unveiling discrepancies: Investigating disparities between anticipated and realized customer satisfaction with LG products in Ahmedabad. International Journal of Law, Human Rights and Constitutional Studies, 5(2). http://thejournalshouse.com/index.php/IntlJ-Law-Humanrights-Consstudy/article/view/922

Devani, P., Gandhi, R., & Vidani, J. (2024). Survey on differences in opinion on healthy and junk food between Gen. Y and Gen. Z. International Journal of Natural and Health Sciences, 2(1), Article 54. https://doi.org/10.59890/ijnhs.v2i1.1179

Dhere, S., Vidani, J. & Solanki, H. V. (2016). A SURVEY ON THE TOWARDS SATISFATION LEVEL OF THE CUSTOMER SHOPPING MALL'S: AN ANALYTICAL STUDY. International Multidisciplinary Journal Think Different, 3(24), 45-50.

Dinodiya, B. K., & Vidani, J. (2023). Exploring consumer perceptions: A comparative analysis of Pantaloons and Zudio in Ahmedabad's retail landscape. Journal of Advanced Research in Operational and Marketing Management, 6(2). https://adrjournalshouse.com/index.php/Journal-OperationalMarketing-Mgt/article/view/1783

Dodiya, G., Dudhat, D., & Vidani, J. (2024). To study the impact of online fraud and scams on online purchasing behavior of consumers in Ahmedabad city. International Journal of Applied Economics, Accounting and Management (IJAEAM), 2(2), Article 41. https://doi.org/10.59890/ijaeam.v2i2.1240

Doshi, D., Gajera, M., & Vidani, J. (2023). To study the consumer perception towards wedding planners among residents of Ahmedabad city. International Journal of Business and Management Practices (IJBMP), 2(1). https://doi.org/10.59890/ijbmp.v2i1.1214

Ghoghabori, M. F., Maheshwari, H., & Vidani, J. (2023). Performance evaluation and consumer preference analysis of LG and Aquaguard water purifiers in Ahmedabad City. Journal of Advanced Research in Entrepreneurship, Innovation & SMES Management, 6(2). https://adrjournalshouse.com/index.php/Journal-Entrepreneurship-SMEMgt/article/view/1792

Gohel, B., Yadav, V., & Vidani, J. (2023). A Study on Customer Satisfaction for Cakes of Monginis & TGB in Ahmedabad city. International Journal of Business and Management Practices (IJBMP), 1(1), Article 86. https://doi.org/10.59890/ijbmp.v1i1.1424

Gohel, B., Yadav, V., Vidani, J. (2023). Enhancing Dealer Satisfaction: Assessing Durability and Business Support of LG Products in Ahmedabad. Journal of Advanced Research in Service Management. Retrieved from https://adrjournalshouse.com/index.php/Journal-ServiceManagement/article/view/1789

Gosiya, P., Parekh, D., Vidani, J. (2024). Personalizing Customer Connections: Optimizing CRM Strategies in Levi's Retail Outlet in Ahmedabad city of Gujarat. International Journal of Integrated Science and Technology, 2(4). Retrieved from https://journal.multitechpublisher.com/index.php/ijist/article/view/1739

Gupta, K., Patel, P., & Vidani, J. (2024). A study on consumer attitude towards smoking amongst males and females of Gen Z in Ahmedabad. International Journal of Applied Economics, Accounting and Management (IJAEAM), 2(1), Article 94. https://doi.org/10.59890/ijaeam.v2i1.1306

Hansora, K., Khokhra, S., & Vidani, J. (2023). Flowing choices: An in-depth comparison of LG and Kent RO water purifiers amongst consumers in Ahmedabad City. Journal of Advanced Research in Business Law and Technology

Management,

6(2).

https://adrjournalshouse.com/index.php/business-law-tech-management/article/view/1820

Jha, V., Bhatt, H., & Vidani, J. (2023). Designing success: Analyzing the influence of Pantaloons retail store layout on consumer purchase intentions in Ahmedabad City. Journal of Advanced Research in Accounting and Finance Management, 5(2). https://adrjournalshouse.com/index.php/Journal-Accounting-FinanceMgt/article/view/1815

Joshi, A., Saxena, S., & Vidani, J. (2023). Decoding the Digital Banking Horizon: Exploring the Dynamics with Bank of Baroda as the Focal Point. International Journal of Social Science and Innovation (IJSSI), 1(1), Article 88. https://doi.org/10.59890/ijssi.v1i1.1498